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Economy of scale: A motion sensor  
with variable speed tuning 

John A. Perrone Department of Psychology, The University of Waikato, 
Hamilton, New Zealand   

We have previously presented a model of how neurons in the primate middle temporal (MT/V5) area can develop 
selectivity for image speed by using common properties of the V1 neurons that precede them in the visual motion pathway 
(J. A. Perrone & A. Thiele, 2002). The motion sensor developed in this model is based on two broad classes of V1 
complex neurons (sustained and transient). The S-type neuron has low-pass temporal frequency tuning, p(ω), and the  
T-type has band-pass temporal frequency tuning, m(ω). The outputs from the S and T neurons are combined in a special 
way (weighted intersection mechanism [WIM]) to generate a sensor tuned to a particular speed, v. Here I go on to show 
that if the S and T temporal frequency tuning functions have a particular form (i.e., p(ω)/m(ω) = k/ω), then a motion sensor 
with variable speed tuning can be generated from just two V1 neurons. A simple scaling of the S- or T-type neuron output 
before it is incorporated into the WIM model produces a motion sensor that can be tuned to a wide continuous range of 
optimal speeds. 
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Introduction 
Understanding how the brain processes visual speed in-

formation is integral to the question of how we gather in-
formation about the environment from retinal image mo-
tion. Our knowledge of how this process occurs would im-
prove if we could deduce the mechanisms underlying the 
properties of the neurons that respond selectively to image 
speed. We know that for a neuron to be tuned to a particu-
lar image velocity (speed), v, it needs to respond maximally 
to combinations of spatial (u) and temporal (ω) frequencies 
that are related by the equation ω = –vu (Watson & Ahu-
mada, 1983). It is well established that neurons in the MT 
area respond best to a particular edge or bar speed 
(Felleman & Kaas, 1984; Maunsell & Van Essen, 1983) 
and that some of them are capable of coding image speed 
independently of changes to the stimulus pattern (i.e., they 
follow the ω = –vu rule) (Perrone & Thiele, 2001; Priebe, 
Cassanello, & Lisberger, 2003). However, until recently, it 
was not clear how MT neurons could have acquired these 
abilities from the V1 neurons that provide their inputs. 
The V1 neurons are not speed tuned; their responses are 
dependent on the spatial frequency content of the stimu-
lus, and they are broadly tuned for temporal frequency 
(Foster, Gaska, Nagler, & Pollen, 1985).  

We have recently shown that despite these limited V1 
properties, it is possible to generate the type of speed tun-
ing found in MT neurons (Perrone, 2004; Perrone & 
Thiele, 2002). We referred to the mechanism by which 
speed tuning could be generated from V1 neurons as the 
weighted intersection mechanism (WIM) model. 

The WIM model 
The building blocks for a WIM speed tuned sensor are 

two types of commonly occurring V1 complex neurons: a 
sustained type (S), which has low-pass temporal frequency 
tuning, p(ω), and a transient type (T) with band-pass tem-
poral frequency tuning, m(ω), (see red and blue lines in 
Figure 1a). 

The spatial frequency (sf) tuning of the S- and T-type 
V1 neurons in the WIM model also differ from each other 
in a special way. The S-type sf tuning function, f(u), used in 
the model is based on actual V1 neuron data (Hawken & 
Parker, 1987) (see dashed red line in Figure 1b). The T sf 
function (blue line in Figure 1b), f ′(u), differs from the S 
type by an amount determined by the shape of the tempo-
ral frequency tuning functions (see Equation 1 below). Let 
S(u, ω) represent the combined spatiotemporal frequency 
sensitivity function of the sustained V1 neuron (or equiva-
lently, its spatiotemporal energy output) and T(u, ω) repre-
sent the transient neuron sensitivity [i.e., S(u, ω) = f(u)p(ω) 
and T(u, ω) = f ′(u)m(ω)]. Note that this multiplication op-
eration (and the steps that follow) assumes that the tempo-
ral function retains its shape as the spatial frequency 
changes and vice versa. There is evidence to support this 
“separability” assumption in V1 monkey (Foster et al., 
1985) and cat (Tolhurst & Movshon, 1975) neurons. The 
issue of separability will be raised again in the Discussion. 

Let v be the optimal speed (velocity) that elicits a 
maximal response from a sensor made up from an S- and T-
type V1 neuron. We have previously demonstrated that if 

( ) ( ) ( )
( )

p vu
f u f u

m vu
′ =  , (1) 
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then S(ui, ωi) = T(ui, ωi) for all ui,ωi, such that ωi/ui = –v 
(Perrone & Thiele, 2002). In other words, if the sf tuning 
of the transient-type V1 neuron differs from the sustained 
sf tuning in the manner specified by Equation 1, then the 
two V1 neurons (S and T) will respond equally to a particu-
lar set of spatial and temporal frequencies corresponding to 
a stimulus speed v.  

In previous presentations of the WIM model (Perrone, 
2004; Perrone & Thiele, 2002), we have adopted the arbi-
trary convention of first setting the spatial frequency tuning 
of the sustained neuron and then generating the transient 
neuron tuning from Equation 1. We have no particular 
reason (e.g., developmental or evolutionary) to favor this 
particular ordering, and one could just as easily rewrite 
Equation 1 so that the sustained tuning is derived from the 
transient tuning. For consistency, in the derivation of the 
variable speed tuning mechanism outlined below, I have 
retained the convention of fixing the S neuron tuning 
properties and modifying the T neuron properties. 

The next stage of the model is to introduce a mecha-
nism that produces a large output whenever the S and T 
neurons are responding equally. The algorithm we adopted 
was 

( )log
( , )

log log
S T

WIM u
T S

α
ω

δ
+ +

=
− +

 , (2) 

where α and δ are constants that control the gain and tun-
ing bandwidth of the sensor. 

This mechanism produces a motion sensor with a spa-
tiotemporal frequency sensitivity profile (the spectral recep-
tive field) that is oriented in (u, ω) frequency space and 
which is maximally sensitive to a particular edge speed, v 
(see Figure 1c). This is because, in frequency space, a mov-
ing edge has a Fourier spectrum that is oriented relative to 
the (u, ω) axes and which passes through the origin (i.e., 
the equation for the spectral line is given by ω = –vu) 
(Watson & Ahumada, 1983). For the particular temporal 
and spatial functions chosen in Figure 1a and 1b, the WIM 
sensor (Equation 2) has a spectral receptive field with a 
slope that is maximally responsive to edges moving at 
2 deg/s to the left. 

We have shown that the spatiotemporal frequency sen-
sitivity profile generated by Equation 2 closely matches 
those commonly found in MT neurons (Perrone & Thiele, 
2001) and have argued that the WIM mechanism could 
form the basis of MT speed tuning (Perrone, 2004; Perrone 
& Thiele, 2002). The requirements for setting up a speed 
tuned sensor using a WIM-type scheme are actually quite 
modest. A broad range of temporal frequency tuning func-
tions will work, as long as one is slightly more band-pass 
than the other (see Figure 6, Perrone & Thiele, 2002). The 
scheme is also tolerant of a broad range of spatial frequency 
tuning functions as long as they can be adjusted sufficiently 
to meet the requirements of Equation 1. 
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Figure 1. Creating a speed tuned sensor from V1 neurons. (a).
V1 neuron temporal frequency tuning curves. (b). V1 neuron
spatial frequency tuning curves. (c). Spectral receptive field of a
model sensor tuned to 2 deg/s. 

While it is an efficient means of generating speed tun-
ing from V1 neurons compared to alternative schemes (e.g., 
Simoncelli & Heeger, 1998), the current configuration of 
the WIM model still requires a new transient-type V1 neu-
ron to be used for each new speed tuning value, vi. For 
each optimum speed required in a WIM sensor tuned to a 
particular spatial frequency, u0, separate matched pairs of S 
and T inputs are required:  (S1, T1), (S1, T2), (S1, T3), etc. 
Given the multitude of speeds that need to be registered in 
a typical retinal image sequence, this is a resource intensive 
mechanism for achieving speed tuning. It would be more 
efficient if we could use the same S-T pair for a range of 
speed tunings. It turns out that a judicious selection of the 
V1 temporal frequency tuning functions enables this econ-
omy to be achieved. 

V1 neuron temporal frequency tuning 
Figure 2 shows a sample of temporal frequency tuning 

data derived from V1 neurons. They range from low-pass 
through to band-pass in their temporal frequency tuning. 

Previously, in the WIM model (Perrone, 2004; Perrone 
& Thiele, 2002), we have used functions developed by 
Watson (1986) to simulate the temporal frequency tuning 
of V1 neurons. For sustained (lowpass) tuning, the func-
tion used was 

( ) 2 2p a bω = +  , (3) 
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where 

( )( )
9

2 2
12 1a πωτ

−
= + and ( )( )

10
2 2

22 1πωτ
−

= +b . 

The parameters τ1 and τ2 are time constants, measured in 
seconds. As can be seen from Figure 1a (red dashed line), a 
good fit to data such as those shown in Figure 2a can be 
obtained by setting ( 1 2, )τ τ  in Equation 3 to (0.0072, 
0.0043). 

To simulate the temporal frequency tuning of transient 
(band-pass)-type V1 neurons (e.g., see Figure 2c), a more 
complex version of the Watson function has been used up 
till now, which includes a “transience factor” (ζ) that in-
creases the degree of band-pass tuning (Perrone & Thiele, 
2002). However, I have since discovered that a more useful 
function for the transient V1 neuron temporal frequency 
tuning is one given by the following equation: 

Figure 2. Replotted temporal frequency tuning data from V1 neu-
rons. (a) and (b). Foster et al. (( ) ( )m p

k
ωω ω=  , (4) 1985). Type unknown, moving

gratings. (c). M. J. Hawken (personal communication, 1999).
Complex type, moving gratings. (d). Hawken, Shapley, and Gro-
sof (where k is a constant (set to 4.0 for Figure 1a). 1996). Complex type, alternating gratings.  

The two functions given by Equations 3 and 4 are 
shown in Figure 1a, and they easily fall within the family of 
tuning curves found in V1 neurons (Figure 2). Besides pro-
viding a good fit to typical V1 temporal frequency tuning 
data, these two particular temporal frequency functions 
offer a special benefit when it comes to setting up speed 
tuning in the WIM model.  

 

Variable speed tuning 
If the transient V1 neuron has temporal frequency tun-

ing based on Equation 4, then the ratio of the S and T 
functions is given by 

( )
( ) ( )

p kR
m

ω
ω

ω ω
= =  . (5) 

On a log-log plot, this ratio is represented by a straight line 
defined by logR = –logw + logk (see dotted line in 
Figure 1a, but note that it has been shifted upwards for 
clarity). This ratio function possesses a unique property: 
If φ is any real number, then from Equation 5, 

( ) ( )1kR Rφω ω
φω φ

= =  

i.e., 

( ) ( )1 R Rω φω
φ

=  . (6) 

This property turns out to be very useful in the new speed 
tuning mechanism. Using Equation 5 again, we can rewrite 
Equation 6 as 

( )
( )

( )
( )

1 p p
m m

ω φω
φ ω φω

=  . (7) 

For a WIM sensor tuned to speed v1, we require the 
following relationship to exist between the different spatial 
and temporal frequency functions (see Equation 1): 

( ) ( ) ( )
( )

1
1 1

1

p v u
f u f u

m v u
′ =     (8) 

To generate a WIM sensor tuned to a new speed v2 us-
ing the current version of the WIM model (Perrone, 2004; 
Perrone & Thiele, 2002), it is necessary to incorporate a 
new transient-type V1 neuron (T2) with new spatial fre-
quency tuning, f2′(u), also controlled by Equation 1, i.e., 

( ) ( ) ( )
( )

2
2 1

2

p v u
f u f u

m v u
′ =  , (9) 

where f1(u) is the sustained spatial frequency tuning func-
tion of the original WIM sensor, tuned to speed v1. If we 
let v2 = φv1, Equation 9 can be rewritten as 

( ) ( ) ( )
( )

1
2 1

1

p v u
f u f u

m v u
φ
φ

′ = . (10) 

Using the result from Equation 7 gives 

( ) ( ) ( )
( )

1
2 1

1

1 p v u
f u f u

m v uφ
′ = . (11) 

 

.
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Combining this result with Equation 8 gives 

( ) ( )2 1
1f u f u
φ

′ = ′ . (12) 

In other words, we do not need to use a new transient 
spatial frequency tuning function, f2′(u), to generate speed 
tuning v2. We can simply scale the original transient neu-
ron spatial frequency function. This is a powerful result 
and it enables a great saving in the number of V1 neurons 
required to generate different speed tunings. Equation 12 
shows that if we start with a single pair of complex V1 neu-
rons, S and T, and scale the T output by a factor = 1/φ 
prior to the WIM algorithm (Equation 2), we will produce 
a sensor tuned to speed v2 = φv1.  

Note that the same result could be derived with the S 
and T neurons inter-changed in the above treatment, such 
that a scaling factor is applied to the S neuron rather than 
the T neuron. In fact, both the S and T outputs could be 
scaled to keep the overall gain of the WIM sensor constant. 
For simplicity, only the T scaling option has been presented 
here and this choice is based on convention (see the WIM 
model section above). 

Results 
Figure 3 shows examples of the theory being put into 

practice. The same S and T units that generated the spec-
tral receptive field in Figure 1c (tuned to 2 deg/s) were used 
to generate units tuned to 1 deg/s (Figure 3a) and 4 deg/s 
(Figure 3b), simply by scaling the T sensitivity by φ  = 2 and 
0.5 for Figures 3a and 3b, respectively. Figure 3c shows the 
speed tuning curves for the three different sensors. These 
were generated using a moving bar (20 pixels wide) and 
two-dimensional image-based versions of the WIM sensors 
(Perrone, 2004). By changing the size of the scaling parame-
ter, φ, a wide continuous range of speed tuning values can 
be generated. 

F
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Figure 4 is a still frame from an animated movie 
(Figure 5) demonstrating the variable speed tuning mecha-
nism. For clarity, the actual movie does not contain all of 
the text labels. The left hand part of the figure shows the 
sustained and transient V1 neuron spectral receptive fields 
in perspective plot form. The sustained amplitude plot is 
shown in red, and it is rendered slightly transparent to 
make the locus of intersection of the two functions more 
apparent. Note that the axes in this plot are linear, and so 
the spatial and temporal frequency contrast sensitivity pro-
files will differ from those in Figure 1.  

In the movie shown in Figure 5, the amplitude of the 
transient unit is being scaled up and down using values of φ 
that range from 0.3 to 4. Note how the two surfaces of the 
S and T functions intersect on a straight line in the (u, ω) 
plane. This is the basis of the WIM model, and it comes 
about because of the special way the transient spatial func-
tion, f ′(u), is constructed (Equation 1). No other spatial 
function will generate a locus of intersection that is exactly 
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straight and oriented in this manner. Notice also how the 
slope of this line changes with different values of φ. The 
locus of intersection remains straight only for different val-
ues of φ because of the special relationship between the 
p(ω) and m(ω) temporal functions (Equation 5). Other 
temporal functions without this property will not retain the 
exact linear intersection as φ changes.  

The spectral receptive field of the WIM sensor gener-
ated by the S and T neurons is shown as an inset in the 
upper right part of the movie. Locations along the point of 
intersection of the S and T surfaces correspond to maxi-
mally sensitive regions of the WIM sensor spectral receptive 
field (see Equation 2). 

Discussion 
I have shown that a single S-T pair of V1 neurons can 

generate a huge number of speed tunings simply by adjust-
ing the strength of the connections between the V1 and 
WIM stages. The variable speed tuning mechanism is an 
amazingly economical strategy that relies on a special rela-
tionship between the temporal frequency tuning curves of 
the different V1 neuron classes used in the WIM model. 
Whether or not the primate brain has actually capitalized 
on this source of economy will be difficult to establish. One 
would need to find the appropriate matched pairs of V1 
neurons that feed into the putative WIM stage and test 
their temporal frequency tuning. The ratio of the two re-
sponses at each tested temporal frequency should follow 
the k/ω rule (Equation 5). The currently available physio-
logical data from V1 neurons (e.g., Figure 2) can certainly 
accommodate the functions required for the variable speed 
tuning mechanism to work. 

As mentioned in the section on the WIM model, the 
speed tuning mechanism relies to some extent on the fact 
that the S and T neuron spatiotemporal response functions 
are separable (within a single quadrant). The development 

of the variable speed tuning mechanism presented above is 
certainly simplified by assuming that S(u, ω) = f(u)p(ω) and 
T(u, ω) = f ′(u)m(ω). The data from some V1 neurons show 
that this assumption is not unreasonable (Foster et al., 
1985; Tolhurst & Movshon, 1975). However, mathematical 
convenience should not be mistaken for biological practi-
cality. In the end, the basic WIM mechanism requires only 
that the S and T neuron spatiotemporal frequency func-
tions overlap along a line given by v = -ωi/ui. One way of 
achieving this is to assume separability and to use Equation 
1, but there are other options. Two inseparable functions 
S′(u, ω) and T′(u, ω) could also be made to intersect along 
the v = –ωi/ui line by changing their  overall shape. Simi-
larly, the primate brain may have evolved S′ and T′ (non-
separable) spatiotemporal frequency functions for its V1 
neurons that enable the variable speed tuning mechanism 
to work. I have simply shown that if separability is a prop-
erty of these neurons, then the theoretical ideal temporal 
frequency tuning curves for variable speed tuning will be 
ones based on the k/ω relationship (Equation 5). The 
WIM model and the variable speed tuning concept are not 
invalidated if further physiological studies reveal that the 
majority of V1 complex neurons are (one quadrant) insepa-
rable in (u, ω) space. 
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Figure 5. Animated movie sequence demonstrating the variable
speed tuning mechanism. It is best viewed frame by frame using
the slider control in QuickTime. 

The animated sequence in Figure 5 was intended to 
convey the continuous nature of the tuning mechanism 
and to demonstrate that very fine adjustments can be made 
to the optimum speed tuning value of the WIM sensor. As 
currently conceived, the different WIM sensors are as-
sumed to be set at some optimum speed tuning value using 
a fixed weight (φ value). However, the animated sequence 
does raise the possibility of a dynamical system in which the 
speed tuning of the sensor could be altered rapidly in re-
sponse to events occurring in other parts of the visual field 
or from extraretinal sources, such as eye movements.  

Conclusion 
Many accounts of motion processing in the brain tend 

to rely on the idea that neurons exist that are able to deliver 
a signal proportional to the speed of patterns moving over 
their receptive fields (see Perrone, 2001; Perrone, 2004). 
Neurons with this property have yet to be found. Instead, 
neurons in one of the key motion processing areas of the 
primate brain (MT) tend to be speed tuned. The fact that 
their responses fall off when a sub-optimal speed occurs is 
advantageous to global motion processing schemes that are 
based on “template matching” (e.g., Perrone, 1992; Perrone 
& Stone, 1994). However, speed tuning is an inefficient 
way of coding image speed compared to systems that di-
rectly output the speed value. Many neurons are required 
to register the wide range of possible speeds encountered 
during normal behaviors. The variable speed tuning 
mechanism outlined in this work overcomes this issue of 
resource intensiveness and shows that speed tuning can be 
both useful and economical.  
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